Grade F PROMPT sheet

F/1 Number Patterns

- A list of numbers with a pattern is called a SEQUENCE
- The numbers are called **TERMS**
- A <u>'TERM TO TERM RULE'</u> tells you how to get from one term to the next

It might be add, subtract, multiply or divide by something

F2 <u>Multiples</u>, factors & square numbers

- <u>FACTORS</u> are what divides exactly into a number
- e.g. Factors of 12 are:

- <u>MULTIPLES</u> are the times table answers
- e.g. Multiples of 5 are:

5 10 15 20 25

 <u>SQUARES</u> are the result of multiplying a number by itself

e.g.
$$1 \times 1 = \boxed{1}$$
 $2 \times 2 = \boxed{4}$
 $3 \times 3 = \boxed{9}$
Square numbers

F/3 Multiply & Divide by 10 or 100

 To <u>multiply</u> by 10, move each digit one place to the <u>left</u>

e.g. $35.6 \times 10 = 356$

Hundreds	Tens	Units	•	tenths
	3	_ 5	•	- 6
3 4	5 🖍	6 🔦	•	

• To <u>divide</u> by 10, move each digit one place to the <u>right</u>

e.g. $35.6 \div 10 = 356 = 3.56$

Tens	Units	•	tenths	hundredths
3 <	5 \	•	6 _	
	1 3	•	5	6

- To <u>multiply</u> by 100, move each digit 2 places to the <u>left</u>
- To <u>divide</u> by 100, move each digit
 2 places to the <u>right</u>

F3 Multiply & Divide by 10 or 100 AN ALTERNATIVE METHOD

Instead of moving the <u>digits</u>

Move the decimal point the opposite way

F4 <u>Fraction</u>, <u>decimal</u>, <u>percentage</u> <u>equivalents</u>

LEARN THESE:

$$\frac{1}{4}$$
 = 0.25 = 25%

$$\frac{1}{2}$$
 = 0.5 = 50%

$$\frac{3}{4}$$
 = 0.75 = 75%

F5 <u>Convert mixed numbers to improper</u> fractions & vv

An improper fraction is top heavy
 & can be changed into a mixed number

 $\frac{3}{2}$ can be shown in a diagram

• A mixed number can be changed back into an improper fraction

$$1_{\times}^{+1} = \frac{3}{2}$$

$$2^{+3}_{\times} = \frac{11}{4}$$

F6 Simple ratio

The ratio of squares to triangles can be written

Ratios can be simplified just like fractions

F7 Use inverse operations

• To undo ADD, just SUBTRACT

• To undo MULTIPLY, just DIVIDE

e.g.
$$7 \times \boxed{3} = 21 (21 \div 7 = 3)$$

• Use balancing:

F8 Brackets in calculations

A calculation must be done in the correct order

- 1. Brackets
- 2. Indices, Division and Multiplication
- 3. Addition and Subtraction

Using this order I get 3 different answers:

$$3 + 6 \times 5 - 1 = 32$$

$$(3 + 6) \times 5 - 1 = 44$$

$$3 + 6 \times (5 - 1) = 27$$

It all depends on where the bracket is

F9 Times tables up to 10×10

It is important to know the times tables and the division facts that go with them

Example

$$9 \times 7 = 63$$

$$63 \div 9 = 7$$

$$63 \div 7 = 9$$

F11 Coordinates in first quadrant

- The horizontal axis is the x-axis
- The vertical axis is called the y-axis
- The origin is where the axes meet
- A point is described by two numbers
 The 1st number is off the x-axis
 The 2nd number is off the y-axis

F12 Written methods for addition

Line up the digits in the correct columns

F12 Written methods for subtraction

• Line up the digits in the correct columns

e.g.
$$645 - 427$$
 H T U 6^{3} /4 1 5 $4 2 7 - 2 1 8$

F12 Written methods for multiplication

F12 Written methods for multiplication

F12 Written methods for division

e.g.
$$125 \div 5$$

BUS SHELTER METHOD

0 2 5

5) $1^{-1}2^{-2}5$

CHUNKING METHOD

F13 Add & subtract decimals

• Line up the digits and the decimal points

F13 Multiply a decimal

F14 Properties of 2D shapes

TRIANGLES - angles add up to 180°

Isosceles triangle

- 2 equal sides
- 2 equal angles
- 1 line of symmetry
- No rotational symmetry

Equilateral triangle

- 3 equal sides
- 3 equal angles 60°
- 3 lines of symmetry
- Rotational symmetry order 3

QUADRILATERALS - all angles add up to 360°

Square

- 4 equal sides
- 4 equal angles 90°
- 4 lines of symmetry
- Rotational symmetry order 4

Rectangle

- Opposite sides equal
- 4 equal angles 90°
- 2 lines of symmetry
- Rotational symmetry order 2

Parallelogram

- Opposite sides parallel
- Opposite angles equal
- NO lines of symmetry
- Rotational symmetry order 2

Rhombus (like a diamond)

- Opposite sides parallel
- Opposite angles equal
- 2 lines of symmetry
- Rotational symmetry order 2

Trapezium

• ONE pair opposite sides parallel

Kite

- One pair of opposite angles equal
- 2 pairs of adjacent sides equal
- ONE line of symmetry
- No rotational symmetry

F14 Properties of 3D shapes

PRISMS- same cross section through length

Cube and cuboid

- 6 faces
- 12 edges
- 8 vertices

Triangular prism

- 5 faces
- 9 edges
- 8 vertices

Cylinder - special prism

PYRAMIDS- a point opposite the base

Pyramid - square based

- 5 faces
- 8 edges
- 5 vertices

Pyramid - triangular based

- 4 faces
- 6 edges

Cone - special pyramid

SPHERES- ball shape

F15 Reflect in a mirror line

• To reflect a shape in a vertical line

• To reflect a shape in a 45° line

Distances from shape to mirror and mirror to reflection must be same

Tracing paper is useful:

- 1. Trace the shape & the mirror line
- 2. Flip the tracing paper over the mirror line
- 3. Redraw the shape in its new position

F16 Rotate a shape

• To rotate a shape 180° about P

Tracing paper is useful:

- 1. Trace the shape
- 2. Hold the shape down with a pencil
- 3. Rotate tracing paper
- 4. Redraw the shape in its new position

F16 Translate a shape

Move horizontally 5 spaces right

Move vertically 4 spaces down

F17 Use a ruler accurately

Measure from 0
This line is 14.7cm long

Use a protractor accurately

Count the number of degrees between the 2 arms of the angle. This angle is 127°

F18 Find perimeter of simple shapes

• **Perimeter** is round the **OUTSIDE**Perimeter of this shape = 12cm

• Area is the number of squares INSIDE Area of this shape = $5cm^2$

F19 Record using a frequency table

Score on dice	Tally	Frequency
1	INK INK	10
2	III	4
3	JUT I	6
4	Ш	3
5	JK III	8
6	1	1

F19 Record using a grouped frequency table

Weight(w)	Tally	Frequency
15 ≤ w < 20		
20 ≤ w < 25		
25 ≤ w < 30		
30 ≤ w < 35		
35 ≤ w < 40		

F20 Use a Venn Diagram

 To place these numbers onto a Venn diagram

4 8 12 16 20 24 28 32 36 40

Multiples of 4 Multiples of 8

• To place these numbers onto a Carroll diagram

	Square	Not a
	number	square
		number
Odd number	9 16 25	
of factors	36 64	
Even number		11 14 27
of factors		47 37 67

F21 Construct/interpret graphs

Line graph - temperature

Bar graph – Number of pupils at a youth club

Pie chart - Number of pupils in the yard

F22 Mode and Range

- Mode is the most frequent measure
- Range is highest minus lowest measure

F23 Language of probability

 Probability words are used to describe how likely it is that an event will happen.

Examples of probability words are

- certain
- likely
- even chance
- unlikely
- impossible

Other words:

- Equally likely when all outcomes have the same chance of occurring
- Biased when all outcomes do NOT have the same chance of occurring